
D48316
Rev ---

NATIONAL POLAR-ORBITING
OPERATIONAL ENVIRONMENTAL

SATELLITE SYSTEM (NPOESS)

OPERATIONAL ALGORITHM DESCRIPTION
DOCUMENT FOR COMMON ADJACENCY

(D48316 Rev ---)

CDRL No. A032

Northrop Grumman Space & Mission Systems Corporation
One Space Park

Redondo Beach, California 90278

Copyright © 2004-2010
Northrop Grumman Corporation and Raytheon Company

Unpublished Work
ALL RIGHTS RESERVED

Portions of this work are the copyrighted work of Northrop Grumman and Raytheon. However, other entities may own

copyrights in this work.

This documentation/technical data was developed pursuant to Contract Number F04701-02-C-0502 with the US
Government. The US Government’s rights in and to this copyrighted data are as specified in DFAR 252.227-7013,

which was made part of the above contract.

This document has been identified per the NPOESS Common Data Format Control Book – External Volume 5
Metadata, D34862-05, Appendix B as a document to be provided to the NOAA Comprehensive Large Array-data
Stewardship System (CLASS) via the delivery of NPOESS Document Release Packages to CLASS.

The information provided herein does not contain technical data as defined in the International Traffic in Arms
Regulations (ITAR) 22 CFR 120.10.

This document has been approved by the Unites States Government for public release in accordance with NOAA

NPOESS Integrated Program Office.

Distribution: Statement A: Approved for public release; distribution is unlimited.

PD

MO
D

48
31

6,
 -

--
. P

D
M

O
 R

el
ea

se
d

: 2
01

0-
06

-2
2

(V
E

R
IF

Y
 R

E
V

IS
IO

N
 S

TA
TU

S
)

D48316
Rev ---

NATIONAL POLAR-ORBITING OPERATIONAL
ENVIRONMENTAL SATELLITE SYSTEM (NPOESS)

OPERATIONAL ALGORITHM DESCRIPTION DOCUMENT FOR

COMMON ADJACENCY (D48316 Rev ---)

ELECTRONIC APPROVAL SIGNATURES:

Roy Tsugawa Date
Algorithm & Data Processing IPT Lead &
Algorithm Change Control Board Chairperson

Ben James Date
Operations & Support IPT Lead

The following individual is recognized for his contributions to the current or previous versions of
this document.

 Ward Dare

PD

MO
D

48
31

6,
 -

--
. P

D
M

O
 R

el
ea

se
d

: 2
01

0-
06

-2
2

(V
E

R
IF

Y
 R

E
V

IS
IO

N
 S

TA
TU

S
)

Revision/Change Record Document Number D48316

Revision

Document
Date

Revision/Change Description

Pages
Affected

--- 02-03-10 Initial Release. ECR A-249A.
Approved for Public Release per Contracts Letter 100610-02.

ALL

PD

MO
D

48
31

6,
 -

--
. P

D
M

O
 R

el
ea

se
d

: 2
01

0-
06

-2
2

(V
E

R
IF

Y
 R

E
V

IS
IO

N
 S

TA
TU

S
)

 D48316
 Rev ---
 Page i

Table of Contents

1.0 INTRODUCTION ... 1

1.1 Objective ... 1

1.2 Scope ... 1

1.3 References ... 1

1.3.1 Document References ... 1

1.3.2 Source Code References .. 2

2.0 ALGORITHM OVERVIEW .. 3

2.1 Common Adjacency Description .. 3

2.1.1.1 Inputs ... 3

2.1.1.1.1 Imagery Resolution Inputs ... 4

2.1.1.1.2 Moderate Resolution Inputs .. 4

2.1.1.1.3 Configuration Guide .. 4

2.1.1.2 Outputs .. 4

2.1.2 Algorithm Processing ... 5

2.1.3 Implementation .. 7

2.1.3.1 Main Module - ProCmnAdjFactory ... 9

2.1.3.2 ProCmnAdjTable .. 9

2.1.3.2.1 initTable ... 9

2.1.3.2.2 getDistance ... 13

2.1.3.2.3 setCurrentPixel .. 14

2.1.3.2.4 getNextAdjPixel ... 14

2.1.3.2.5 resetAdjIndex .. 14

2.1.3.3 ProCmnAdjIMGTable ... 14

2.1.3.4 ProCmnAdjMODTable ... 15

2.1.3.5 ProCmnAdjPixel ... 15

2.1.3.6 ProCmnAdj ... 15

2.1.3.7 ProCmnAdjInf ... 15

2.1.3.7.1 ProCmnAdjInf_resetAdjIndex () ... 15

2.1.3.7.2 ProCmnAdjInf_setCurrentPixel () .. 15

2.1.3.7.3 ProCmnAdjInf_getNextAdjPixel () ... 15

2.1.3.8 Interfaces ... 15

2.1.3.8.1 Interfacing with Common Adjacency ... 15

PD

MO
D

48
31

6,
 -

--
. P

D
M

O
 R

el
ea

se
d

: 2
01

0-
06

-2
2

(V
E

R
IF

Y
 R

E
V

IS
IO

N
 S

TA
TU

S
)

 D48316
 Rev ---
 Page ii

2.1.3.8.2 Get the Common Adjacency table ... 16

2.1.3.8.3 Using a Common Adjacency table .. 17

2.1.3.8.4 Find adjacent pixel and perform algorithm specific processing 17

2.1.4 Graceful Degradation ... 18

2.1.4.1 Graceful Degradation Input .. 18

2.1.4.2 Graceful Degradation Processing .. 18

2.1.4.3 Graceful Degradation Output ... 18

2.1.5 Exception Handling .. 18

2.1.6 Data Quality Monitoring ... 18

2.1.7 Computational Precision Requirements .. 18

2.1.8 Algorithm Support Considerations ... 18

2.1.9 Assumptions and Limitations ... 18

2.1.10 Science Support References ... 18

3.0 GLOSSARY/ACRONYM LIST .. 19

3.1 Glossary ... 19

3.2 Acronyms .. 22

4.0 OPEN ISSUES .. 23

PD

MO
D

48
31

6,
 -

--
. P

D
M

O
 R

el
ea

se
d

: 2
01

0-
06

-2
2

(V
E

R
IF

Y
 R

E
V

IS
IO

N
 S

TA
TU

S
)

 D48316
 Rev ---
 Page iii

List of Figures

Figure 1: Common Adjacency Algorithm Usage Flow Diagram .. 6

Figure 2: Class Diagram for CMN Adjacency ... 8

Figure 3: Determining Nearest Row Index in Previous or Next Scan ... 10

Figure 4: Determining Column Offset in Previous or Next Scan ... 11

Figure 5: Current Pixel Relationship to Scan and Adjacency Grid .. 12

Figure 6: Common Adjacency Sequence Diagram ... 16

List of Tables
Table 1: Reference Documents .. 2

Table 2: Source Code References .. 2

Table 3: Imagery Band Geolocation Data ... 4

Table 4: Imagery Band Grid-Row-Column Data ... 4

Table 5: Moderate Band Geolocation Data ... 4

Table 6: Moderate Band Grid-Row-Column Data ... 4

Table 7: Common Adjacency Output Pixel ... 5

Table 8: Glossary .. 19

Table 9: Acronyms ... 22

Table 10: List of OAD TBD/TBR .. 23

PD

MO
D

48
31

6,
 -

--
. P

D
M

O
 R

el
ea

se
d

: 2
01

0-
06

-2
2

(V
E

R
IF

Y
 R

E
V

IS
IO

N
 S

TA
TU

S
)

 D48316
 Rev ---
 Page 1

1.0 INTRODUCTION

1.1 Objective
The purpose of the Operational Algorithm Description (OAD) document is to express, in
computer-science terms, the remote sensing algorithms that produce the National Polar-Orbiting
Operational Environmental Satellite System (NPOESS) end-user data products. These products
are individually known as Raw Data Records (RDRs), Temperature Data Records (TDRs),
Sensor Data Records (SDRs) and Environmental Data Records (EDRs). In addition, any
Intermediate Products (IPs) produced in the process are also described in the OAD.

The science basis of an algorithm is described in a corresponding Algorithm Theoretical Basis
Document (ATBD). The OAD provides a software description of that science as implemented in
the operational ground system -- the Data Processing Element (DPE).

The purpose of an OAD is two-fold:

1. Provide initial implementation design guidance to the operational software developer.
2. Capture the “as-built” operational implementation of the algorithm reflecting any changes

needed to meet operational performance/design requirements.

An individual OAD document describes one or more algorithms used in the production of one or
more data products. There is a general, but not strict, one-to-one correspondence between
OAD and ATBD documents.

1.2 Scope
The scope of this document is limited to the description of the Common (CMN) Adjacency
algorithm which is used to fill in a neighborhood of VIIRS pixels for later processing (e.g.
determine if adjacent pixels to the pixel being processed are cloudy). Since several VIIRS
algorithms use a neighborhood of pixels in their processing, it was decided to develop a
common module for those algorithms that require cross-scan/granule processing. A key part of
the algorithm’s functionality would be to replace bow-tie deleted pixels in the current scan with
similar observations (i.e. pixels viewing essentially the same part of the earth) from adjacent
scans. A VIIRS scan contains multiple detectors and as the size of the fields of view of these
detectors increases as the sensor moves off-nadir, the scan’s footprint resembles a bow-tie with
adjacent scans overlapping—i.e. the same geography being viewed in consecutive scans. In
fact, the same geography may appear in up to three consecutive scans at the off-nadir edges of
the scan. To reduce the data flow from the spacecraft, approximately 13% of the VIIRS pixels
are trimmed on-board (i.e. duplicate earth views are removed from the data flow) (on-board
pixel trim). To further reduce the processing of ‘duplicate’ observations, an additional 7% of the
pixels are ‘trimmed’ during product processing (extended pixel trim). CMN Adjacency is a
modification of the method originally employed by the dropped Active Fires science algorithm.
The underlying theory is captured in this document rather than in an Algorithm Theoretical Basis
Document (ATBD).

1.3 References

1.3.1 Document References
The documents relevant to the algorithm described in this OAD are listed in Table 1.

PD

MO
D

48
31

6,
 -

--
. P

D
M

O
 R

el
ea

se
d

: 2
01

0-
06

-2
2

(V
E

R
IF

Y
 R

E
V

IS
IO

N
 S

TA
TU

S
)

 D48316
 Rev ---
 Page 2

Table 1: Reference Documents
Document Title Document Number/Revision Revision Date
Operational Algorithm Description Document for VIIRS Active
Fires D36981 Rev B2 01 Dec 2009

Tech Memo
Cross-granule Algorithm Processing NP-EMD.2005.510.0038 7 Mar 2005

D35836_G_NPOESS_Glossary D35836 Rev. G 10 Sep 2008
D35838_G_NPOESS_Acronyms D35838 Rev. G 10 Sep 2008
Operational Algorithm Description Document for VIIRS SDR GEO D41868_Rev A20 04 Nov 2009

1.3.2 Source Code References
The Common Adjacency algorithm has yet to be assigned a version number as algorithm
versioning will begin after transition to Operations and Sustainment (O&S). The active fires
algorithm drop that was the starting point for the Common Adjacency algorithm is listed in Table
2.

Table 2: Source Code References
Reference Title Reference Tag/Revision Revision Date

Active Fires Science Code (VIIRS-AER-AF-1.02) (ECR-A007A) ISTN_VIIRS_NGST_2.3 30 Sep 2003

IDPS Operational Software Build 1.5 ; ‘Beyond Final’ Spiral
(OAD Rev. ---, 10 Jun 09)

19 Jul 2007

ACCB (No Code updates) OAD Rev --- 03 Feb 2010

PD

MO
D

48
31

6,
 -

--
. P

D
M

O
 R

el
ea

se
d

: 2
01

0-
06

-2
2

(V
E

R
IF

Y
 R

E
V

IS
IO

N
 S

TA
TU

S
)

 D48316
 Rev ---
 Page 3

2.0 ALGORITHM OVERVIEW
Some algorithms use neighboring observations in the creation of their products. CMN
Adjacency is used to identify neighboring observations and this includes identifying
replacements for bow-tie removed observations from adjacent scans. The size of the
neighborhood of observations used in subsequent processing varies from the eight adjacent
pixels to multiple scans with all bow-tie removed pixels being replaced.

The bow-tie replacement portion of the CMN Adjacency algorithm was developed based on the
original pixel replacement approach used by the Active Fires algorithm. This approach used a
look-up table to index into the adjacent scan to retrieve data based on location within the current
scan, however, this approach did not account for variation in the VIIRS telescope rotation speed
or the rotation of the earth. The CMN Adjacency algorithm accounts for these variations by
using distance calculations between pixels to determine the nearest neighbors.

The Common Adjacency algorithm is used by the following data processing algorithms:

1. VIIRS Active Fires
2. VIIRS Cloud Mask
3. VIIRS SDR Bright Pixel

2.1 Common Adjacency Description
The Common Adjacency algorithm is used to determine the row/column values of neighboring
pixels given the primary pixel of interest and the size of the pixel neighborhood as specified by
the radius supplied by the calling algorithm. A radius of one means to return the eight
immediate surrounding pixels and a radius of two expands the neighborhood to 25 pixels (5x5).
The formula for determining the height/width of the pixel neighborhood based on its radius is as
follows:

 Pixel Neighborhood Width or Height = (2 · radius) + 1 Eqn. 1.

Based on the radius supplied by the calling algorithm, Common Adjacency determines and
stores to memory the row and column values of each adjacent pixel in the neighborhood. Note
that these adjacent pixels may be located in the current, previous, or next scan. Each adjacent
pixel row/column pair is then retrieved from the Common Adjacency algorithm one at a time by
the calling algorithm. A more detailed description of the algorithm is found in Section 2.1.2.

2.1.1.1 Inputs
The inputs for the Common Adjacency Algorithm are the geolocation information for the current
granule and the needed adjacent scans from adjacent granules, and the radius of the adjacent
pixel neighborhood. Note that three full geolocation granules are required for CMN adjacency
processing: the current granule, the previous granule and the next granule. The previous and
the next granules are the two along track neighboring granules, referred to as cross granules.
The type of geolocation information is dependent on whether the distance between pixels is
determined using the grid-row-column product (see VIIRS SDR OAD, D41868, GEO section) or
the latitude and longitude from the VIIRS geolocation product. Note that the grid-row-column
product is an intermediate product that is produced by the VIIRS geolocation algorithm to
improve latency. For each granule, the geolocation algorithm produces a polar stereographic
map grid that contains floating point row-column coordinates for all the pixels in the granule.
The latitude-longitude of all of the samples in the granule can be determined from the grid-row-

PD

MO
D

48
31

6,
 -

--
. P

D
M

O
 R

el
ea

se
d

: 2
01

0-
06

-2
2

(V
E

R
IF

Y
 R

E
V

IS
IO

N
 S

TA
TU

S
)

 D48316
 Rev ---
 Page 4

column values. The operational default is to use the grid-row-column product for computing the
distances since it is computationally faster (see Section 2.1.3.2.2 for details). The lat/lon data
from the VIIRS geolocation product is only used when the grid-row column product is not
available. The latter occurs during science to operational code conversion as the dropped
science test data does not include a grid-row-column product. Table 3 and Table 4 list the
inputs for image resolution pixel neighborhoods and Table 5 and Table 6 list the inputs for
moderate resolution pixel neighborhoods.

2.1.1.1.1 Imagery Resolution Inputs
Table 3: Imagery Band Geolocation Data

Input Type Description Units: Valid Range
Radius Integer Adjacency Grid Size Determinant Unitless:1 to 15
lat Float32[1536][6400] Latitude Radians : -Pi/2 to Pi/2
lon Float32[1536][6400] Longitude Radians: 0 to 2Pi

Table 4: Imagery Band Grid-Row-Column Data
Input Type Description Units: Valid Range

Radius Integer Adjacency Grid Size Determinant Unitless: 1 to 15
Grow Float64[1536][6400] Grid Row Unitless: 0 to 65535
Gcol Float64[1536][6400] Grid Col Unitless: 0 to 65535

2.1.1.1.2 Moderate Resolution Inputs
Table 5: Moderate Band Geolocation Data

Input Type Description Units: Valid Range
Radius Integer Adjacency Grid Size Determinant Unitless: 1 to 7
Lat Float32[768][3200] Latitude Radians : -Pi/2 to Pi/2
Lon Float32[768][3200] Longitude Radians: 0 to 2Pi

Table 6: Moderate Band Grid-Row-Column Data
Input Type Description Units: Valid Range

Radius Integer Adjacency Grid Size Determinant Unitless: 1 to 7
Grow Float64[768][3200] Grid Row Unitless: 0 to 65535
Gcol Float64[768][3200] Grid Col Unitless: 0 to 65535

2.1.1.1.3 Configuration Guide
The CMN Adjacency Algorithm reads the XML format PRO_CMN_ADJ_CFG.xml configuration
file. This file is the source of the pixel trim information used within the algorithm.

2.1.1.2 Outputs
The CMN Adjacency Algorithm creates a granule size array (either MOD or IMG resolution)
containing the row and column indices for all pixels, with excluded pixels such as bow-tie
deleted observations replaced with row and column data from adjacent scans. This array is

PD

MO
D

48
31

6,
 -

--
. P

D
M

O
 R

el
ea

se
d

: 2
01

0-
06

-2
2

(V
E

R
IF

Y
 R

E
V

IS
IO

N
 S

TA
TU

S
)

 D48316
 Rev ---
 Page 5

stored in memory and is used by the CMN Adjacency algorithm for extracting the adjacent pixel
row-column pairs for the neighborhood required by the calling algorithm. The row-column pair
of each adjacent pixel, along with a FillPixel flag, is output to the calling routine one at a time.
The FillPixel Flag indicates whether a valid row-column pair could be found (set to True if valid
row-column pair does not exist). This flag is triggered when the adjacent pixel’s column is
beyond the granule’s cross-track boundaries (i.e., target pixels at the beginning or end of a scan
will have neighborhoods that extend beyond the granule boundary). In addition, CMN
Adjacency will also set this flag when the adjacent pixel’s row exceeds the cross-granule’s
along-track boundary. The outputs are shown in Table 7.

Table 7: Common Adjacency Output Pixel
Output Type/Size Description Units: Valid Range

Row Int32 Row for adjacent pixel Unitless : 0 to 1535
Column Int32 Column for adjacent pixel Unitless : 0 to 6399
FillPixel Bool Set to true if either the adjacent pixel row extends

beyond either cross granule along-track boundary or the
adjacent column extends past the granule cross-track
boundaries.
If this flag is set to true, this means that a valid
replacement row-column pair could not be found for the
adjacent pixel. Note that when this flag is triggered, the
row-column values are set to -1.

Boolean : true/false

2.1.2 Algorithm Processing
Figure 1 is a flow chart of the CMN Adjacency algorithm. Obtaining the row and column pair for
the adjacent pixels is a four step process. First, the calling algorithm provides the grid-row-
column data (or lat/lon data if no grid-row-column data is available) to the CMN Adjacency
initialization code. Next, CMN Adjacency creates a granule size table of row and column
indices, where the excluded pixels are replaced with row-column pairs from adjacent scans and
granules if necessary. In order to do this, the algorithm reads the Pixel Trim Configuration file,
PRO_CMN_ADJ_CFG.xml, to determine if a pixel is bow-tie deleted. If it is, then the CMN
Adjacency algorithm determines a candidate replacement from the adjacent scan by finding the
closest pixel in the same column as the bow-tie deleted pixel in the current scan. Once the
nearest pixel in the same column is determined, CMN Adjacency determines if a pixel in an
adjacent column is closer than the one in the same column. This column shift accounts for the
rotation of the earth and variation in the VIIRS telescope rotation speed. The end result is an
adjacency table of all scans from which the adjacent pixels can be easily retrieved. In the third
step, the calling algorithm provides the target pixel’s row and column indices and the radius of
the pixel neighborhood to CMN Adjacency, which uses these inputs to create a vector of rows
and columns for all adjacent observations. Lastly, the adjacent pixels row and column
information is fed to the calling algorithm one adjacent pixel at a time. Processing is done on a
scan basis with two loops—one to process through each pixel in the current scan (Processing
Another Target Pixel decision in Figure 1) and the other to feed back the row and column
information on each adjacent pixel to the calling algorithm. The process then repeats for the
next target pixel until all pixels in the current scan and subsequently all the scans in a granule
have been processed.

PD

MO
D

48
31

6,
 -

--
. P

D
M

O
 R

el
ea

se
d

: 2
01

0-
06

-2
2

(V
E

R
IF

Y
 R

E
V

IS
IO

N
 S

TA
TU

S
)

 D48316
 Rev ---
 Page 6

Figure 1: Common Adjacency Algorithm Usage Flow Diagram

END

Caller
Algorithm Start

CMN Adjacency
Initialization

Generate Adjacency
Table (initTable)

Create vector of
adjacent pixel row-

column pairs
(setCurrentPixel)

 Get next adjacent
pixel in vector?

(getNextAdjPixel)

 Process another
target pixel?

STEP 1

Loop on all adjacent pixels in
the neighborhood

Pass Geo information

NO

YES
Pass radius and

target pixel

Caller
Algorithm

Adjacency
Table in
memory

 Pixel Trim
Configuration

File

Caller Algorithm
uses adjacent

pixel info
YES

Output adjacent
pixel R-C data

NO

Loop on all target
pixels in the granule

STEP 2

STEP 3

STEP 4

PD

MO
D

48
31

6,
 -

--
. P

D
M

O
 R

el
ea

se
d

: 2
01

0-
06

-2
2

(V
E

R
IF

Y
 R

E
V

IS
IO

N
 S

TA
TU

S
)

 D48316
 Rev ---
 Page 7

2.1.3 Implementation

The CMN Adjacency logic is written in object-oriented C++. The class diagram is shown in
Figure 2. The calling function initially gains access to the CMN Adjacency operations through
the singleton class ProCmnAdjFactory by the static method getInstance. Once the calling
algorithm has obtained an instance to the ProCmnAdjFactory object, ProCmnAdjFactory’s
getTable method is called to construct an actual ProCmnAdjTable derived object. The getTable
method takes as parameters both a pointer to a data structure that provides access to the
calling algorithm’s geolocation data, as well as a flag that indicates whether a VIIRS imagery
band dimensioned adjacency table, ProCmnAdjIMGTable, or a VIIRS moderate band
dimensioned adjacency table, ProCmnAdjMODTable, should be created. The getTable method
passes the pointer to the geolocation data to the appropriate adjacency table constructor. After
constructing an adjacency table, getTable calls the adjacency table’s initTable method and then
returns the initialized adjacency table to the calling algorithm. Once the calling algorithm has
access to an initialized ProCmnAdjTable object it may call that object’s setCurrentPixel method,
passing as arguments the row and column of the target (center) pixel as well as the adjacency
radius. After calling setCurrentPixel, the calling algorithm may call getNextAdjPixel repeatedly,
retrieving one ProCmnAdjPixel object at a time, until the list of pixels adjacent to the target pixel
is exhausted.

Sections 2.1.3.1 – 2.1.3.7 describe methods, classes and interfaces within the singleton class.
Section 2.1.3.8 is an example of how an algorithm may interface with Common Adjacency.

PD

MO
D

48
31

6,
 -

--
. P

D
M

O
 R

el
ea

se
d

: 2
01

0-
06

-2
2

(V
E

R
IF

Y
 R

E
V

IS
IO

N
 S

TA
TU

S
)

 D48316
 Rev ---
 Page 8

Figure 2: Class Diagram for CMN Adjacency

ProCmnAdjMODTable
fGeoLocData_ : viirs_SDR_MOD_FGeoloc_type = NULL
gRowColData_ : viirs_SDR_MOD_growcol_type = NULL

ProCmnAdjMODTable()
ProCmnAdjMODTable()
<<virtual >> ~ProCmnAdjMODTable()
<<virtual>> getDistance()
<<virtual>> isValidPixel()
ProComAdjMODTable()

ProCmnAdjIMGTable
fGeoLocData_ : viirs_SDR_IMG_FGeoloc_type = NULL
gRowColData_ : viirs_SDR_IMG_growcol_type = NULL

ProComAdjIMGTable()
ProCmnAdjIMGTable()
<<virtual >> ~ProCmnAdjIMGTable()
<<virtual>> isValidPixel()
<<virtual>> getDistance()
ProCmnAdjIMGTable()

ProCmnAdjFactory
<<static>> factory_ : ProCmnAdjFactory
adjTables_ : vector<ProCmnAdjTable*>
distanceType_ : DistCalcType
crossGranScans_ : Int32
granuleID_ : string
algorithm_ : ProCmnAlgorithm*
myCallerID : ProCmnCallerIDImpl
<<static>> instanceMutex_; : ProCmnMutexMt
mutex_ : ProCmnMutexMt

<<static>> getInstance()
getTable()
~ProCmnAdjFactory()
resetAdjTable()
createMODTable()
createIMGTable()
getCfgValues()
ProCmnAdjFactory()
<<const>> callerID()

<<singleton>>

ProCmnAdjPixel
row_ : Int32
column_ : Int32
fillPixel : bool

ProCmnAdjPixel()
~ProCmnAdjPixel()
setFillData()
setPixelData()
isFillPixel()
getRow()
getCol()
<<operator>> =()

ProCmnAdjTable
totalScans_ : Int32
rowsPerScan_ : Int32
columnsPerScan_ : Int32
scansInPreGran_ : Int32
scansInCurGran_ : Int32
crossGranScans_ : Int32
isOnBoard_ : bool
tableType_ : string
prev_ : std::vector < std::vector <Int32> >
next_ : std::vector < std::vector <Int32> >
top_ : std::vector < std::vector <Int32> >
bottom_ : std::vector < std::vector <Int32> >
nextColOffset_ : std::vector < std::vector <Int32> >
prevColOffset_ : std::vector < std::vector <Int32> >
curAdjPixel_ : Int32
adjPixels_ : vector <ProCmnAdjPixels>
trim_ : map < int, int>

<<virtual>> ~ProCmnAdjTable()
initTable()
setCurrentPixel()
getNextAdjPixel()
resetAdjIndex()
ProCmnAdjTable()
getPixelTrim()
getConfigItems()
calculatePrevNeighbor()
calculateNextNeighbor()
getDefaultPrev()
getDefaultNext()
<<pure virtual>> getDistance()
getGranIndexes()
getColOffset()
<<pure virtual>> isValidPixel()
calcGreatCircleDist()
validGeo()
ProComAdjTable()

<<abstract>>

PD

MO
D

48
31

6,
 -

--
. P

D
M

O
 R

el
ea

se
d

: 2
01

0-
06

-2
2

(V
E

R
IF

Y
 R

E
V

IS
IO

N
 S

TA
TU

S
)

 D48316
 Rev ---
 Page 9

2.1.3.1 Main Module - ProCmnAdjFactory
Singleton class that returns either ProCmnAdjIMGTable or ProCmnAdjMODTable objects to the
calling algorithm. There is one object per adjacent pixel. So, if the radius were one, eight tables
with the row and column of the adjacent pixel would be returned.

2.1.3.2 ProCmnAdjTable
This is the base class from which ProCmnAdjIMGTable and ProCmnAdjMODTable inherit,
allowing polymorphic behavior of overridden virtual methods.

2.1.3.2.1 initTable
The initTable method creates a granule size array of all scans with excluded pixels such as
bow-tie deleted observations replaced with row and column data from adjacent scans. The
initTable method determines the first row (minimum row index) and last row (maximum row
index) where the current scan has valid data based on VIIRS pixel trim information. Rows for
three consecutive scans (previous, current, and next) are numbered from zero. For example, at
column number 639, the VIIRS moderate resolution extended pixel trim affects two rows at the
bottom and top of the scan and therefore, the minimum row index is 18 and the maximum row
index is 29 (see Figure 3). Using the minimum and maximum row information for each column,
the method determines whether a pixel from either the previous or next scan needs to be
substituted for any adjacent pixels within the current scan. For example, in Figure 5, out of the
eight adjacent pixels to the current/target pixel, one resides in the pixel trim area and therefore,
the CMN Adjacency method is used to provide a pixel viewing essentially the same geography
from the adjacent scan.

PD

MO
D

48
31

6,
 -

--
. P

D
M

O
 R

el
ea

se
d

: 2
01

0-
06

-2
2

(V
E

R
IF

Y
 R

E
V

IS
IO

N
 S

TA
TU

S
)

 D48316
 Rev ---
 Page 10

Figure 3: Determining Nearest Row Index in Previous or Next Scan

Values for Scan #2, Column 639

Scan
boundaries

Shaded = pixel trim cell

Next scan row index = 37 (depends on distance calculation)

“maximum row” index = 29 (closest to 37 in next scan)

“minimum row” index = 18 (closest to 10 in previous scan)

Previous scan row index = 10 (depends on distance calculation)
Previous
Scan

Current
Scan

Next
Scan

PD

MO
D

48
31

6,
 -

--
. P

D
M

O
 R

el
ea

se
d

: 2
01

0-
06

-2
2

(V
E

R
IF

Y
 R

E
V

IS
IO

N
 S

TA
TU

S
)

 D48316
 Rev ---
 Page 11

Figure 4: Determining Column Offset in Previous or Next Scan

Values for Scan #2,Column 639
(center column)

Scan
Boundaries

Shaded = pixel trim cell

Previous scan row index = 10 (depends on distance calculation)
Previous column offset = +1 (distance depends on Earth
rotation)

Next column offset = +1 (distance depends on Earth
rotation)

Next row index = 37 (depends on distance calculation)

“minimum row” index = 18

“maximum row” index = 29

Previous
Scan

Current
Scan

Next
Scan

PD

MO
D

48
31

6,
 -

--
. P

D
M

O
 R

el
ea

se
d

: 2
01

0-
06

-2
2

(V
E

R
IF

Y
 R

E
V

IS
IO

N
 S

TA
TU

S
)

 D48316
 Rev ---
 Page 12

Figure 5: Current Pixel Relationship to Scan and Adjacency Grid

The row for any pixel within the desired pixel neighborhood will fall into one of three cases:
either an adjacent pixel’s row will be less than the minimum row for that pixel’s column within
the scan, the adjacent pixel’s row will be equal or greater than the minimum row but less than or
equal to the maximum row for that pixel’s column within the scan, or the adjacent pixel’s row will
be greater than the maximum row for that pixel’s column within the scan.

If an adjacent pixel’s row is less than its column’s minimum row in the current scan, then the
nearest row of a geographically like pixel from the previous scan, as predetermined in the
initTable process, is stored instead of the row of the pixel in the current scan. The exact formula
for determining the row for the substitute pixel is shown below. Also, any column offset
determined in initTable is applied to the column value that is stored for the adjacent pixel.

 Substitute Pixel’s Row = 1 + adj_row – minimum_row + closest_row Eqn. 2.

Where:

adj row = The row number of the original adjacent pixel requiring substitution in the
current scan.

minimum row = The row number of first non-pixel trim row of the current scan.
closest row = Closest row in the previous scan that is geographically closest to the

minimum row in the current column for the current scan.

If an adjacent pixel’s row value falls between its column’s minimum and maximum rows, as
predetermined in the initTable process, then no substitution is necessary; and that pixel’s row
and column location is stored in the vector for later retrieval.

Lastly, if an adjacent pixel’s row is greater than its column’s maximum row within the current
scan, then the nearest row of a geographically like pixel from the next scan, as predetermined in

Pixel trim Current

Adjacent pixel area

[18][640]

[17][639] [17][640] [17][641]

[18][639] [18][641]

[19][639] [19][640] [19][641]

Current Scan #2
 (not to scale)

Example
Current Pixel: row 18, col 640
Radius 1

PD

MO
D

48
31

6,
 -

--
. P

D
M

O
 R

el
ea

se
d

: 2
01

0-
06

-2
2

(V
E

R
IF

Y
 R

E
V

IS
IO

N
 S

TA
TU

S
)

 D48316
 Rev ---
 Page 13

the initTable process, is substituted. This substitute pixel’s row and offset corrected column is
then stored in the collecting vector in place of the original pixel’s location. The exact formula for
determining the row of the substitute pixel is as follows.

 Substitute Pixel’s Row = 1 + adj_row – maximum_row – 1 + closest_row Eqn. 3.

Where

adj row = The row number of the adjacent pixel requiring substitution in the
current scan.

maximum row = The row number of the last non-pixel trim row of the current scan.
closest row = Closest row in the next scan that is geographically closest to the

maximum row in the current column for the current scan.

2.1.3.2.2 getDistance
The getDistance method is used by initTable to determine the distance between the minimum
and maximum row indexed pixels and all pixels in the same column in the previous (for
minimum row indexed pixel) and next (for maximum row indexed pixel) scans. The previous
scan index and next row index are then assigned based on minimum distance between the
respective minimum and maximum row indexed pixels. From Figure 3, the nearest neighbor in
column 639 for minimum row index pixel 18 is 10 (previous scan row index) and the nearest
neighbor in column 639 for maximum row index pixel 29 is 37 (next scan row index).

Due to the rotation of the earth, the identified previous scan row index and next scan row index
may not be the nearest neighbor to the minimum row index and maximum row index pixels.
Subsequently, the distances between the pixels in the adjacent columns of the previous and
next scan indexed pixels and the minimum and maximum row index pixels are calculated and if
the distance is less than that for the previous and next scan indexed pixels, a column offset is
applied. For example, if the distance calculation showed that the distance between the pixel in
row 10, column 640 and the minimum row indexed pixel (column 639) was less than that for the
pixel in row 10, column 639, then a previous scan column offset of +1 would be applied (see
Figure 4).

In order to determine the adjacent scan row that is geographically nearest to a current scan’s
minimum or maximum row, as well as the nearest adjacent scan column to the current scan’s
column, geographic distances are calculated using the getDistance method. The distance
formula used by the getDistance method is dependent on whether the Common Adjacency
algorithm constructor code was supplied grid row column data or geolocation data.

If the Common Adjacency table is constructed using grid row column data (the operational
default), where granule rows and columns may be converted to global grid row and column
values, then the Pythagorean Theorem is used to determine distances.

 ()222)()(gridcol2gridcol1gridrow2gridrow1Distance −+−= Eqn. 4.

Where:
 gridrow1 = global grid row of first pixel location
 gridcol1 = global grid column of first pixel location
 gridrow2 = global grid row of second pixel location
 gridcol2 = global grid column of second pixel location

PD

MO
D

48
31

6,
 -

--
. P

D
M

O
 R

el
ea

se
d

: 2
01

0-
06

-2
2

(V
E

R
IF

Y
 R

E
V

IS
IO

N
 S

TA
TU

S
)

 D48316
 Rev ---
 Page 14

Note that the square root of the sum is not necessary because the calling Common Adjacency
methods are only concerned with relative differences in distance.

If the grid-row-column data are not available, then the great circle distance formula from
spherical geometry is used with provided geolocation data. To compute the actual arc length,
the angular distance (denoted by AngDistance) should be multiplied by the radius of the sphere
(e.g. the Earth radius). However, since the Common Adjacency methods are only concerned
with relative differences in distance, comparing the angular distance is sufficient.

 ())cos()cos()cos()sin()sin(cos 1 lon2lon1lat2lat1lat2lat1eAngDistanc −⋅⋅+⋅= − Eqn. 5.

Where:
 lat1 = latitude of first pixel location
 lon1 = longitude of first pixel location
 lat2 = latitude of second pixel location
 lon2 = longitude of second pixel location

Again, the operational default is to use the grid-row column as this is more efficient since the
grid row column distance calculation only involves two integer multiplications, two integer
subtractions, and one integer addition whereas the geolocation distance calculation involves six
floating point trigonometric functions, three floating point multiplications, one floating point
addition and one floating point subtraction.

2.1.3.2.3 setCurrentPixel
The setCurrentPixel method takes as parameters the row and column of the pixel being
processed by the calling algorithm (i.e. target pixel) and the pixel neighborhood radius. The
method then saves the row and column value for of all pixels in the required neighborhood of
the target.

2.1.3.2.4 getNextAdjPixel
The getNextAdjPixel method supplies the row and column of each successive adjacent pixel
that was previously stored in a vector by the setCurrentPixel method, incrementing an internal
counter on each call. The method returns True for each pixel data retrieval and returns False
when the internal counter equals the vector size indicating that all of the pixel row/column pairs
have been retrieved.

2.1.3.2.5 resetAdjIndex
This method resets to zero the internal counter that is incremented every time that
getNextAdjPixel is called. This allows the calling algorithm to retrieve all of the stored adjacent
pixel data a second time.

2.1.3.3 ProCmnAdjIMGTable
Derived from ProCmnAdjTable, this class is used by ProCmnAdjFactory to build the adjacency
table for Imagery resolution scans. This table accounts for both onboard pixel trim and also
earth rotation between scans.

PD

MO
D

48
31

6,
 -

--
. P

D
M

O
 R

el
ea

se
d

: 2
01

0-
06

-2
2

(V
E

R
IF

Y
 R

E
V

IS
IO

N
 S

TA
TU

S
)

 D48316
 Rev ---
 Page 15

2.1.3.4 ProCmnAdjMODTable
Derived from ProCmnAdjTable, this class is used by ProCmnAdjFactory to build the adjacency
table for Moderate resolution scans. This table accounts for both onboard pixel trim and also
earth rotation between scans.

2.1.3.5 ProCmnAdjPixel
A container class for adjacent pixel row/column data, one pixel per object.

2.1.3.6 ProCmnAdj
A set of C code wrappers for the C++ ProCmnAdjIMGTable and ProCmnAdjMODTable
functionality primarily for use in Fortran code. The Fortran interface is implemented via
ProCmnAdjInf.

2.1.3.7 ProCmnAdjInf
A Fortran interface to the Pro Common Adjacency functionality.

2.1.3.7.1 ProCmnAdjInf_resetAdjIndex ()
Fortran interface to resetAdjIndex.

2.1.3.7.2 ProCmnAdjInf_setCurrentPixel ()
Fortran interface to setCurrentPixel.

2.1.3.7.3 ProCmnAdjInf_getNextAdjPixel ()
Fortran interface to getNextAdjPixel.

2.1.3.8 Interfaces

2.1.3.8.1 Interfacing with Common Adjacency
The Common Adjacency library of functions was developed because several algorithms use
adjacent pixels for their data processing. For example, Cloud Mask algorithm uses Common
Adjacency utilities to process cloud adjacency. Interfacing with common adjacency can be done
as shown below in Figure 6: Common Adjacency Sequence Diagram.

PD

MO
D

48
31

6,
 -

--
. P

D
M

O
 R

el
ea

se
d

: 2
01

0-
06

-2
2

(V
E

R
IF

Y
 R

E
V

IS
IO

N
 S

TA
TU

S
)

 D48316
 Rev ---
 Page 16

Figure 6: Common Adjacency Sequence Diagram

See the steps below for more detail.

2.1.3.8.2 Get the Common Adjacency table

The Common Adjacency utility uses the factory method pattern, which is an object oriented
design pattern that defines the interface used to create the common adjacency table which
contains the adjacent pixels. ProCmnAdjFactory creates either a Moderate resolution
adjacency table or an Imagery resolution adjacency table, depending on the desired resolution.

adjTable = ProCmnAdjFactory::getInstance().getTable(alg ,
ProCmnAdjFactory::MOD_TABLE);

 :
DerivedAlgorithm

 :
DerivedAlgorithm

 :
ProCmnAdjFactory

 :
ProCmnAdjFactory

 :
ProCmnAdjTable

 :
ProCmnAdjTable

getInstance()

DerivedAlgorithm
class represents
the base class for
each algorithm

ProCmnAdjFactory is the factory
class in the Common Adjacency
utility to define the interface to create
common adjacency table.

ProCmnAdjTable creates
a MOD or IMG table for
the specified algorithm
with adjacent pixels

getTable(ProCmnAlgorithm *, TableType)

Get instance of the
ProCmnAdjFactory.

Get the Adjacency table
according to the table type
(MOD, IMG)

setCurrentPixel(int rowIndex, int colIndex, int aRadius, AdjacencyType)
Set the current pixel using
the row index, col index,
radius and adjacency Type

getNextAdjPixel(ProCmnAdjPixel &, bool)adjPixel is the pixel data, which
are returned starting with the upper
left to the lower right. Returns false
when there is not another pixel.
Check for adjacent pixel until there
are no more adjacent pixels

PD

MO
D

48
31

6,
 -

--
. P

D
M

O
 R

el
ea

se
d

: 2
01

0-
06

-2
2

(V
E

R
IF

Y
 R

E
V

IS
IO

N
 S

TA
TU

S
)

 D48316
 Rev ---
 Page 17

OR

adjTable = ProCmnAdjFactory::getInstance().resetAdjTable(alg ,
ProCmnAdjFactory::MOD_TABLE);

There are cases where more than one algorithm gets processed as part of a controller, and
there may be a need to reset the Adjacency table using the resetAdjTable. For example, in the
mask controller, Active Fires uses two adjacent scans for cross scan processing and Cloud
Mask uses five adjacent scans for cross scan processing. The cross scan information for
common adjacency is defined in configuration file PRO_CMN_ADJ_CFG.xml
(CrossGranScans and the default value is 2). However, if an algorithm requires a different
number of scans than the default value for cross scan processing, the CrossGranScans value
may be overridden in the algorithm specific configuration file. In the Cloud Mask configuration
file (PRO_VIIRS_CM_CFG.xml), the value of CrossGranScans is set to “5” to use five adjacent
scans for cross scan processing. Therefore, when Cloud Mask is processed using the mask
controller it is necessary to use resetAdjTable function which resets the adjacency table with
five adjacent scans.

The first parameter of the getTable and resetAdjTable calls (in the examples above) is a pointer
to the calling algorithm. The second parameter used above is either the MOD_TABLE constant,
or the IMG_TABLE constant, as desired for the calling algorithm’s resolution.

2.1.3.8.3 Using a Common Adjacency table

Once the calling algorithm has obtained an adjacency table, the caller may loop through all the
pixels in the granule that need to be processed and retrieve the adjacent pixels.

adjTable->setCurrentPixel(rowIndex, columnIndex, aRadius,
ProCmnAdjTable::NO_CENTER);

VIIRS Cloud Mask uses aRadius = 1; which is the number of adjacent pixels to include in each
direction.

The above example uses the AdjacencyType = NO_CENTER retrieval type constant which
means retrieve every pixel within the radius except the center pixel. Other retrieval type
constants are ALL_PIXELS, where all pixels within the radius including the center are returned,
and EDGE_PIXELS, where only the pixels on the extremities of the radius range are returned.

2.1.3.8.4 Find adjacent pixel and perform algorithm specific processing

As the calling algorithm loops through each granule pixel, it checks for pixels adjacent to that
granule pixel until there are no more adjacent pixels. When an adjacent pixel is available, the
calling algorithm performs the specific processing needed (for example: Cloud Mask checks the
Cloud confidence of the adjacent pixel and reports the most extreme confidence value):

adjTable->getNextAdjPixel(adjPixel, false);

The first parameter, adjPixel is the pixel data which is returned starting with the upper left to the
lower right. Use adjPixel.getRow() and adjPixel.getCol() values to locate the corresponding

PD

MO
D

48
31

6,
 -

--
. P

D
M

O
 R

el
ea

se
d

: 2
01

0-
06

-2
2

(V
E

R
IF

Y
 R

E
V

IS
IO

N
 S

TA
TU

S
)

 D48316
 Rev ---
 Page 18

adjacent pixel value needed. This function returns false when there is not another pixel to
retrieve. The second parameter is set to true if the caller wants fill pixels returned and false
otherwise.

Below is an example how adjValue is used in Cloud Mask to determine the corresponding cloud
confidence value:

adjValue = *(flags->cloud_confidence + (adjPixel.getRow() * M_VIIRS_SDR_COLS) +
adjPixel.getCol());

Check if (adjValue == CM_CONF_CLOUDY) or if (adjValue == CM_PROB_CLOUDY) or if
(adjValue == CM_PROB_CLEAR) and set the adjacent pixel value and cloud adjacency flag
accordingly.

2.1.4 Graceful Degradation

2.1.4.1 Graceful Degradation Input
None.

2.1.4.2 Graceful Degradation Processing
None.

2.1.4.3 Graceful Degradation Output
None.

2.1.5 Exception Handling
The getDistance method sends debug message when distance type is not specified and non-
valid distance is returned.

2.1.6 Data Quality Monitoring
None.

2.1.7 Computational Precision Requirements
All distance calculations are done at double precision with distances stored as 32-bit floats
which are sufficient precision for determining which pixels are nearest neighbors to reference
pixel.

2.1.8 Algorithm Support Considerations
None.

2.1.9 Assumptions and Limitations
None.

2.1.10 Science Support References
The common adjacency library of functions is unique to the operational baseline—i.e. no
corresponding science baseline.

PD

MO
D

48
31

6,
 -

--
. P

D
M

O
 R

el
ea

se
d

: 2
01

0-
06

-2
2

(V
E

R
IF

Y
 R

E
V

IS
IO

N
 S

TA
TU

S
)

 D48316
 Rev ---
 Page 19

3.0 GLOSSARY/ACRONYM LIST

3.1 Glossary
The current glossary for the NPOESS program, D35836_G_NPOESS_Glossary, can be found
on eRooms. Table 8 contains those terms most applicable for this OAD.

Table 8: Glossary
Term Description

Algorithm A formula or set of steps for solving a particular problem. Algorithms can be expressed in any
language, from natural languages like English to mathematical expressions to programming
languages like FORTRAN. On NPOESS, an algorithm consists of:
A theoretical description (i.e., science/mathematical basis)
A computer implementation description (i.e., method of solution)
A computer implementation (i.e., code)

Algorithm
Configuration
Control Board
(ACCB)

Interdisciplinary team of scientific and engineering personnel responsible for the approval
and disposition of algorithm acceptance, verification, development and testing transitions.
Chaired by the SEIT Lead or representative, members include representatives from all
stakeholder IPTs and the IPO.

Ancillary Data Any data which is not produced by the NPOESS System, but which is acquired from external
providers and used by the NPOESS system in the production of NPOESS data products.

Auxiliary Data Auxiliary Data is defined as data, other than data included in the sensor application packets,
which is produced internally by the NPOESS system, and used to produce the NPOESS
deliverable data products.

EDR Algorithm Scientific description and corresponding software and test data necessary to produce one or
more environmental data records. The scientific computational basis for the production of
each data record is described in an ATBD. At a minimum, implemented software is science-
grade and includes test data demonstrating data quality compliance

Environmental
Data Record
(EDR)

[IORD Definition]
Data record produced when an algorithm is used to convert Raw Data Records (RDRs) to
geophysical parameters (including ancillary parameters, e.g., cloud clear radiation, etc.).
[Supplementary Definition]
An Environmental Data Record (EDR) represents the state of the environment, and the
related information needed to access and understand the record. Specifically, it is a set of
related data items that describe one or more related estimated environmental parameters
over a limited time-space range. The parameters are located by time and Earth coordinates.
EDRs may have been resampled if they are created from multiple data sources with different
sampling patterns. An EDR is created from one or more NPOESS SDRs or EDRs, plus
ancillary environmental data provided by others. EDR metadata contains references to its
processing history, spatial and temporal coverage, and quality.

Operational Code Verified science-grade software, delivered by an algorithm provider and verified by IWPTB, is
developed into operational-grade code by the IDPS IPT.

Operational-Grade
Software

Code that produces data records compliant with the System Specification requirements for
data quality and IDPS timeliness and operational infrastructure. The software is modular
relative to the IDPS infrastructure and compliant with IDPS application programming
interfaces (APIs) as specified for TDR/SDR or EDR code

PD

MO
D

48
31

6,
 -

--
. P

D
M

O
 R

el
ea

se
d

: 2
01

0-
06

-2
2

(V
E

R
IF

Y
 R

E
V

IS
IO

N
 S

TA
TU

S
)

 D48316
 Rev ---
 Page 20

Term Description
Raw Data Record
(RDR)

[IORD Definition]
Full resolution digital sensor data, time referenced and earth located, with absolute
radiometric and geometric calibration coefficients appended, but not applied, to the data.
Aggregates (sums or weighted averages) of detector samples are considered to be full
resolution data if the aggregation is normally performed to meet resolution and other
requirements. Sensor data shall be unprocessed with the following exceptions: time delay
and integration (TDI), detector array non-uniformity correction (i.e., offset and responsivity
equalization), and data compression are allowed. Lossy data compression is allowed only if
the total measurement error is dominated by error sources other than the data compression
algorithm. All calibration data will be retained and communicated to the ground without lossy
compression.
[Supplementary Definition]
A Raw Data Record (RDR) is a logical grouping of raw data output by a sensor, and related
information needed to process the record into an SDR or TDR. Specifically, it is a set of
unmodified raw data (mission and housekeeping) produced by a sensor suite, one sensor, or
a reasonable subset of a sensor (e.g., channel or channel group), over a specified, limited
time range. Along with the sensor data, the RDR includes auxiliary data from other portions
of NPOESS (space or ground) needed to recreate the sensor measurement, to correct the
measurement for known distortions, and to locate the measurement in time and space,
through subsequent processing. Metadata is associated with the sensor and auxiliary data to
permit its effective use.

Retrieval
Algorithm

A science-based algorithm used to ‘retrieve’ a set of environmental/geophysical parameters
(EDR) from calibrated and geolocated sensor data (SDR). Synonym for EDR processing.

Science Algorithm The theoretical description and a corresponding software implementation needed to produce
an NPP/NPOESS data product (TDR, SDR or EDR). The former is described in an ATBD.
The latter is typically developed for a research setting and characterized as “science-grade”.

Science Algorithm
Provider

Organization responsible for development and/or delivery of TDR/SDR or EDR algorithms
associated with a given sensor

Science-Grade
Software

Code that produces data records in accordance with the science algorithm data quality
requirements. This code, typically, has no software requirements for implementation
language, targeted operating system, modularity, input and output data format or any other
design discipline or assumed infrastructure

SDR/TDR
Algorithm

Scientific description and corresponding software and test data necessary to produce a
Temperature Data Record and/or Sensor Data Record given a sensor’s Raw Data Record.
The scientific computational basis for the production of each data record is described in an
Algorithm Theoretical Basis Document (ATBD). At a minimum, implemented software is
science-grade and includes test data demonstrating data quality compliance

Sensor Data
Record (SDR)

[IORD Definition]
Data record produced when an algorithm is used to convert Raw Data Records (RDRs) to
calibrated brightness temperatures with associated ephemeris data. The existence of the
SDRs provides reversible data tracking back from the EDRs to the Raw data.
[Supplementary Definition]
A Sensor Data Record (SDR) is the recreated input to a sensor, and the related information
needed to access and understand the record. Specifically, it is a set of incident flux
estimates made by a sensor, over a limited time interval, with annotations that permit its
effective use. The environmental flux estimates at the sensor aperture are corrected for
sensor effects. The estimates are reported in physically meaningful units, usually in terms of
an angular or spatial and temporal distribution at the sensor location, as a function of
spectrum, polarization, or delay, and always at full resolution. When meaningful, the flux is
also associated with the point on the Earth geoid from which it apparently originated. Also,
when meaningful, the sensor flux is converted to an equivalent top-of-atmosphere (TOA)
brightness. The associated metadata includes a record of the processing and sources from
which the SDR was created, and other information needed to understand the data.

PD

MO
D

48
31

6,
 -

--
. P

D
M

O
 R

el
ea

se
d

: 2
01

0-
06

-2
2

(V
E

R
IF

Y
 R

E
V

IS
IO

N
 S

TA
TU

S
)

 D48316
 Rev ---
 Page 21

Term Description
Temperature Data
Record (TDR)

[IORD Definition]
Temperature Data Records (TDRs) are geolocated, antenna temperatures with all relevant
calibration data counts and ephemeris data to revert from T-sub-a into counts.
[Supplementary Definition]
A Temperature Data Record (TDR) is the brightness temperature value measured by a
microwave sensor, and the related information needed to access and understand the record.
Specifically, it is a set of the corrected radiometric measurements made by an imaging
microwave sensor, over a limited time range, with annotation that permits its effective use. A
TDR is a partially-processed variant of an SDR. Instead of reporting the estimated
microwave flux from a specified direction, it reports the observed antenna brightness
temperature in that direction.

PD

MO
D

48
31

6,
 -

--
. P

D
M

O
 R

el
ea

se
d

: 2
01

0-
06

-2
2

(V
E

R
IF

Y
 R

E
V

IS
IO

N
 S

TA
TU

S
)

 D48316
 Rev ---
 Page 22

3.2 Acronyms
The current acronym list for the NPOESS program, D35838_G_NPOESS_Acronyms, can
be found on eRooms. Table 9 contains those terms most applicable for this OAD.

Table 9: Acronyms
Term Expansion

ATBD Algorithm Theoretical Basis Document
DPE Data Processing Element
O&S Operations and Sustainment
VIIRS Visible Infrared Imager Radiometer Suite

PD

MO
D

48
31

6,
 -

--
. P

D
M

O
 R

el
ea

se
d

: 2
01

0-
06

-2
2

(V
E

R
IF

Y
 R

E
V

IS
IO

N
 S

TA
TU

S
)

 D48316
 Rev ---
 Page 23

4.0 OPEN ISSUES

Table 10: List of OAD TBD/TBR
No. DESCRIPTION Resolution Date

None

PD

MO
D

48
31

6,
 -

--
. P

D
M

O
 R

el
ea

se
d

: 2
01

0-
06

-2
2

(V
E

R
IF

Y
 R

E
V

IS
IO

N
 S

TA
TU

S
)

